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SUMMARY

The method proposed by Hopfield and Tank for using the Hopfield neural network with

continuous-valued neurons to solve the traveling salesman problem (TSP) is tested by simulation.

Several researchers have apparently been unable to successfully repeat the numerical simulation

documented by Hopfield and Tank. However, it appears that the reason for those difficulties is that

a key parameter value is reported erroneously (by four orders of magnitude) in the original paper.

When a reasonable value is used for that parameter, the network performs generally as claimed.

Additionally, a new method of using feedback to control the input bias currents to the amplifiers

is proposed and successfully tested. This eliminates the need to set the input currents by trial and

error.

INTRODUCTION

The neural network approach to computation is based on highly parallel, analog architecture.

The neural networks proposed by Hopfield and Tank would ultimately be constructed as integrated

packages of resistors, capacitors, and operational amplifiers. The operational amplifiers, which

constitute the artificial "neurons," would be operated well beyond their linear ranges and into

saturation. The potential applications are in pattern recognition, complex motion control, and

other problems which have proven to be either too computationally intensive or simply not practical

for conventional digital computers. Neural networks have the potential for rapidly solving some

very difficult problems that require excessive amounts of time on digital computers.

Hopfield and Tank (ref. 1) have shown that neural networks can be applied to certain op-

timization problems. In particular, they propose that neural networks may be useful in solving

combinatorial optimization problems very rapidly, provided that one does not require the absolute

optimal solution but only a reasonably good one. They show how to "map" a particular combinato-

rial optimization problem, the traveling salesman problem (TSP), onto the network. The traveling

salesman problem may be stated as follows: given n city locations, plan a tour for a salesman such

that each city is visited exactly once, with the salesman ultimately returning to the starting city,

in the minimum possible distance.

The mapping of the traveling salesman problem onto the neural network consists of the speci-

fication of an energy function of, and a physical interpretation of, the output state of the network.

The network seeks the minimum energy state, which is interpreted according to predetermined

rules as a particular solution of the TSP.

ttopfield Network

In the most general configuration of the Hopfield neural network, the output of each operational

amplifier ("neuron") would be connected to the input of every other amplifier through some effective

conductance, forming a matrix of conductances, or a "connection matrix". The input of each

amplifier is also connected through a parallel RC network to ground. The input/output relationship

of each operational amplifier approximates a sigmoid function (fig. 1). The gain of each amplifier



isdefinedas the slopeat zero input.For convenience,the outputs of the amplifiersare scaledto

liebetween 0 and 1 over the fullrange.

The network isa nonlineardynamical system which may be describedwith state-spaceno-

tation.The statevectorof the system, z, representsthe inputsto the amplifiersand the output

vector,y, representsthe outputs of the amplifiers.The matrix of conductances,T, and the input

biascurrentsto theamplifiers,I,determinethe trajectoryofthe system accordingto the differential

equation

= -_/_ + Ty + I (1)

where

= g(=) (2)

with g(z) representing the sigmoid function and r being the time constant of the network, which is

the time constant of the identical RC networks connected between the input of each amplifier and

ground.

The network seeksa localminimum ofan energy functiongivenby

1

E = --_ yrTy - yTI (3)

By proper selectionof T and I, the energy functioncan be designed to effectivelymap various

optimizationproblems onto the network. For example_ for an unconstrainedquadraticfunction

minimization problem where E representsthe functionto be minimized, the elements of T are

givenby
O_E

T_j- Oyic3yj (4)

or, more succinctly, the T matrix may be expressed as

O2E
T - - (5)

Oy 2

and I is given by
OE

- Ty (6)
I Oy

Substituting equation (6) into equation (1), we have

c_E

= (7)
Oz OE

= -zlr Oy Oz (s)

Thus it is apparent that the behavior of the network is very similar to that of a gradient-descent

minimization algorithm. The effective gradient-descent rate, Oz/Oy, is a time varying diagonal

matrix whose components (as can be seen from the sigmoid function of figure 1) increase in mag-

nitude as z moves away from the origin of the state space. Note that, since the network effectively
performs a gradient-search, only local minima can be found.
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TRAVELING SALESMAN PROBLEM

The traveling salesman problem is a classic problem in combinatorial optimization which may

be stated as follows: given n city locations, plan a tour for a salesman such that each city is visited

exactly once, with the salesman ultimately returning to the starting city, in the minimum possible

distance. This problem is interesting because it is both simple to state and, for a large number of

cities, difficult to solve. In principal, the solution is simple: exhaustive search. However, the search

space grows combinatorially with the number of cities and quickly becomes impractical to search

for even the most powerful computers. The number of possible tours is (n - 1)!/2.

Hopfield and Tank have devised a way of mapping the traveling salesman problem tsp onto the

neural network (ref. 1). For n cities, the state vector _ and the output vector y are each composed

of n x n elements which, although treated as vectors of dimension n 2 for purposes of state-space

notation, are actually interpreted as n × n arrays. The energy function is designed to force the

equilibrium output array of the network to the form of a permutation matrix, which has a single 1

in each row and column and 0 elsewhere. The order of each city in the tour is then read off as the

column containing the 1 in the row corresponding to that particular city. For example, the output

array

0 1 0 0 a_

0 0 0 1 b

1 0 0 0 c

0 0 1 0 d

would be interpreted as the city-sequence c-a-d-b.

city

Each element of the output array y is confined to the range from 0 to 1 by virtue of the sigmoid

function. By defining the energy function in a particular way, it is shown that the elements of the

output array can be forced to values of 0 or 1 at equilibrium. That is, the output can be forced

to move to a corner of the n-dimensional "hypercube" which constitutes the output space. For

convenience, the notation Yki is used to denote the element of the output array corresponding to

the k-th city (row) in the i-th position (column). The energy function is given by

i j t_j

+ n/2 ZEEy, y J
j i i#k

2

+ D/2 kY,j(Yk,j÷l+ (9)
i k¢i j

where dkl represents the distance between the k-th and l-th cities (for notational convenience we

treat the subscripts as modulo n, i.e., n + 1 --, 1, 0 --* n), no (¢ n) is a parameter used to provide

an offset to the neutral positions of the amplifiers, and A, B, C, and D are parameters selected by

the experimenter.

The energy equation (9) translates, according to equation (5), into a connection matrix given

by



Ti j,kt -A61k(1 - 6fl)

-B6_z(1 - 6_k)

(where _ij = 1 if i = j and 6ij = 0 otherwise) with external input currents

(10)

Ii_ = cno (11)

The terms of equation (10) have the following interpretation. The terms with coefficients A,

B, and C provide the constraints for the traveling salesman problem in general. The term with

coefficient A provides the inhibitory connection within each row, which inhibits more than one

neuron from being activated in each row at equilibrium. The term with coefficient B has the same

function for the columns. The term with coefficient C provides the overall excitation, which tends

to make the total number of activated neurons at equilibrium equal to the number of cities. The

term with coefficient D provides the information regarding the locations of the cities and is thus

the only term specific to each particular problem. At equilibrium, if the network settles to a valid

permutation matrix, the latter term is equal to the total tour distance.

Substituting equations (10) and (11) into equation (1) yields the following differential equation

describing the state of the network.

and

- .4 - BZ y'.J
l#j k¢_

-D _ _k (yh,j+_ + _k,j-_)
k

(12)

y_j = 1/2 (1 + tanla(z_/_0)) (13)

for all iandj. The sigmoid function of equation (13) is intended to approximate the input/output

characteristics of an actual operational amplifier. The parameter m0 is the inverse of the gain of

the amplifiers.

The network is initialized by setting the value of all the state variables equal, so that the sum

of all the outputs is equal to the equilibrium sum n, the number of cities, then adding uniformly

distributed random noise of relative magnitude 10% to each state variable. The random noise is

necessary to break symmetry, because otherwise the network cannot distinguish between the 2n

tours of identical length and thus does not converge. Since the network is a free-running system,

the initial state determines the final output state.

Feedback Control of Input Current

As stated above, no is not set equal to n in equations (9), (11), and (12). This provides an

offset of the neutral positions of the amplifiers. The required offset depends on the city locations
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and the parameters of the network and cannot be easily predicted. Hopfield and Tank apparently

selected the value of no by trial and error for their particular example problem. It is now proposed

that the network just described be modified to have feedback control of the value of no, which is

accomplished with feedback control of the input current.

The feedback control is intended to force the total excitation level of the network to the proper

value at equilibrium. At equilibrium, the scaled sum of the outputs of all the amplifiers should

equal the number of cities, n. The feedback control law simply adjusts the value of no according

to the difference between the sum of the outputs and the number of cities, as follows:

where K is a constant feedback gain. The exact initial value of ne is not critical; it may as well be

set to n or somewhat greater, perhaps 1.5n.

SIMULATION RESULTS

The simulation of the traveling salesman problem solution by Hopfield and Tank was duplicated

as accurately as possible. With the exception of the time constant r, the parameters were set to the

same values used by Hopfield and Tank. Hopfield and Tank made the statement (ref. 1) "Without

loss of generality, r cart be set to 1." That statement is apparently incorrect, and may have led one

group to conclude (ref. 2), "Our simulations indicate that Hopfield and Tank were very fortunate

in the limited number of TSP simulations they attempted." A more reasonable value for v is 10 -4.

The parameters were thus

A=B=500, C=200, D=500

z0= 0.02, v= 10 -4

In this evaluation, a simple first-order Euler integration scheme was used, with an integration time

increment of At = 10 -s, which is one-tenth the time constant 7".

To establish a baseline, the traveling salesman problem was also solved by using the trivial

nearest-city approach. One city was chosen as the starting point, and the "salesman" simply

continued going to the nearest city which had not yet been visited until all cities had been visited.

The initial city is arbitrary as far as the closed-path distance is concerned, but the choice of initial

city affects the result of the nearest-city algorithm. Therefore, each city was tried as the initial city

and the best result was recorded. The execution time of the complete algorithm was thus of order

n 2, which grows neither combinatorially nor exponentially with the number of cities.

The network configuration parameters given above were used on five randomly located sets

of 10 and 15 cities. For each set of cities, 20 different random initializations of the network were

tried. The results are summarized in tables 1 and 2 for the 10-city and the 15-city problems,

respectively. The tables show, for each randomly located set of cities_ the number of trials resulting

in valid solutions (permutation matrices), the number resulting in solutions as good as or better

than the nearest-city solution_ the normalized tour distance of the best solution (normalized with

the nearest-city tour distance), and the normalized average tour distance for all the valid solutions.

Plots of the best neural network solution of the 20 trials for each random city set are shown in

figures 2 and 3 for the 10-city and the 15-city problems, respectively. For purposes of comparison,



the bestnearest-citysolutionis shownto the left of eachcorrespondingneuralnetworksolution.
Theindividualplotsareorderedaccordingto the tour numbersin the tables.

According to these results, the neural-network approach cannot be depended on to reliably

provide even a valid solution of the traveling salesman problem: for the 10-city case, 78% of the

trialsresulted in valid solutions;for the 15-citycase, 72% were valid.Of those valid solutions,51%

were better than the best nearest-city solution for the 10-city case and 28% were better for the

15-city case. For a11 of the 10-city cases and all hut one of the 15-city cases, the best of the 20

neural-network solutions was better than the best nearest-city solution. However, the average of

the valid solutions was slightlyworse than the best nearest-citysolution for allbut one of the city

sets.

Of course, the network performance could possibly be improved by tuning the parameters

more carefully, but that would be very time consuming and computationally intensive so it was not

attempted.

An attempt was made to solve randomly-generated 20-city traveling salesman problems, but the

network configuration with the parameters given above was completely unsuccessful at converging

to valid tours. No extensive effort was made to fund a better set of parameters. A brief effort was

made to incorporate slowly increasing amplifier gains, as was done by Hopfield and Tank for the

30-city problem, but this was not successful. Thus a serious question remains as to how useful

the neural network method is for the large-scale traveling salesman problem. Unfortunately, the

simulation becomes so computationally intensive for the case with many cities that the potential

payoff may not justify the development effort involved in retuning or reconfiguring the network.

This could change if an actual analog-hardware network becomes available.

CONCLUSIONS

The use of the Hopfield neural network with continuous-valued neurons to solve optimization

problems is equivalent to a gradient-descent algorithm which minimizes a quadratic cost function.

Thus only local minima can be found.

The method proposed by Hopfield and Tar_k for using the network to solve the traveling

salesman problem has been tested by simulation. An error in one of the parameters reported in the

Hopfield and Tank paper appears to be the source of convergence difficulties reported by several

researchers. Apparently the network time constant should be approximately 10 -4 rather than 1.

Once that error is corrected, the network performs generally as claimed.

A new method of feeding back the total excitation level of the network to control the input

bias currents to the amplifiers has been tested and found to work very well. The method eliminates

the need to use trial and error to set the input currents.

Since there is a 2n redundancy in the solution of the traveling salesman problem (starting

city and direction of tour is arbitrary) a partially random initialization of the neurons is required.

Otherwise the network cannot break the symmetry and hence does not converge at all. When the

parameters given by Hopfield and Tank are used, not all random initializatiorts lead to a useful

solution. In some cases, the network does not converge to a valid tour at all; in other cases, the

network converges to a valid tour which is worse than the simple nearest-city solution. However,



if several different random initializations are tried, some are likely to result in a valid tour with

a shorter tour distance than that resulting from the nearest-city solution. This was shown by

simulation for the 10- and 15-city traveling salesman problem.
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Table 1: SUMMARY OF RESULTS OF SIMULATED NEURAL NETWORK SOLUTION OF

TRAVELING SALESMAN PROBLEM WITH 10 RANDOMLY LOCATED CITIES.

Tour

number

1

2

3

4

5

Number

trims

20

20

20

20

20

Valid

solutions

19

14

20

7

18

Good a

solutions

13

4

15

5

14

Normalized b

minimum

0.9596

0.9999

0.9228

0.9628

0.9374

Normalize_

average
0.9912

1.0810

1.0117

1.1241

1.0418

Total 10{) 78 51 -- --

a as good as or better than best nearest-city solution
b normalized with best nearest-city tour distance

Table 2: SUMMARY OF RESULTS OF SIMULATED NEURAL NETWORK SOLUTION OF

TRAVELING SALESMAN PROBLEM WITH 15 RANDOMLY LOCATED CITIES.

1

2

3
4

5

total

Number

trims

20

20

20

20

20

100

Valid

solutions

20

17

8

13

14

72

Good a

solutions

3

0

7

10

8

I 28

Normalized b

minimum

0.9999

1.0460

0.8945

0.9414

I 0.9582

Normalized b

average
1.0919

1.1601

1.0930

1.0570

1.0675

a as good as or better than best nearest-city solution
b normalized with best nearest-city tour distance
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Figure h Operational amplifier input-output relationship: the sigmoid function.
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Figure 2: Right column: best neural network so-

lutions of the 10-city traveling salesman problem.

Left column: corresponding best nearest-city solu-

tion.

Figure 3: Right column: best neural network so-

lutions of the 15-city travelin_ salesman problem.

Left column: corresponding best nearest-city solu-

tion.
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